
Making Norms Concrete∗

Huib Aldewereld
Universiteit Utrecht
The Netherlands
huib@cs.uu.nl

Sergio Álvarez-Napagao
Universitat Politècnica de

Catalunya, Barcelona, Spain
salvarez@lsi.upc.edu

Frank Dignum
Universiteit Utrecht
The Netherlands

dignum@cs.uu.nl

Javier Vázquez-Salceda
Universitat Politècnica de

Catalunya, Barcelona, Spain
jvazquez@lsi.upc.edu

ABSTRACT
In systems based on organisational specifications a reoc-
curring problem remains to be solved in the disparity be-
tween the level of abstractness of the organisational con-
cepts and the concepts used in the implementation. Organ-
isational specifications (deliberately) abstract from general
practice, which creates a need to relate the abstract concepts
used in the specification to concrete ones used in practice.
A solution for this problem is the use of counts-as state-
ments, which, by defining the social reality, provide the con-
crete concepts their institutional and organisational mean-
ing. Continuing work on the implementation of counts-as
to relate abstract and concrete concepts in agent-based sys-
tems, this paper investigates the implementation of counts-
as statements in Drools to relate abstract organisational
specifications and its norms to concrete situations.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Theory, Algorithms, Design

Keywords
Normative Systems, Social and Organisational Structure,
Environments , Organisations and Institutions

1. INTRODUCTION
Norms in organisational specifications tend to abstract

from the concrete events and situations that the norm is
supposed to cover. The norms of organisations are inten-
tionally specified at a high level of abstraction to range over
many different situations and to require little maintenance

∗This research has been carried out within the FP7-215890
ALIVE project, funded by the European Commission.

Cite as: Making Norms Concrete, Huib Aldewereld, Sergio Álvarez-
Napagao, Frank Dignum, and Javier Vázquez-Salceda, Proc. of 9th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.),
May, 10–14, 2010, Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

over time. While this abstraction creates increased stability
over time and flexibility of application for the norms, it also
creates a problem when using norms as the abstract concepts
in norms need to be related to the concrete events/concepts
that occur in the system.

A typical way to solve this gap between normative ontolo-
gies and concrete systems is by applying refinement tech-
niques as done in requirement engineering to link the ab-
stract model elements to concrete concepts at design time.
However, this only solves static cases and cannot cope with
dynamic domains where the link between the abstract and
concrete concepts changes over time (due to unforeseen cir-
cumstances). Moreover, using such methods for bridging
the gap does not explicitly state how the concrete and ab-
stract concepts relate, and leaves no information for the
system to reason about different implementations (or dif-
ferent contexts) at runtime. In critical domains such as cri-
sis management, it is important to be able to reason about
different approaches to solve a crisis. For instance, in the
Netherlands a nation-wide set of procedures for crisis man-
agement exists called grip (Coordinated Regional Incident-
Management Procedure). These procedures define the ap-
propriate response to a crisis in terms of the required coordi-
nation, control, and flow of information based on the severity
of the disaster. There are 4 levels, where grip-1 is the low-
est, e.g., a large car accident or a small local fire, and grip-4
is the highest, e.g., a terrorist attack or large-scale flooding.
These kinds of contexts require the ability to reason about
different links between the abstract organisational concepts
and concrete concepts used in practice (e.g., would scaling
from one grip level to another provide additional means to
solve the crisis).

It has already been proposed that an explicit representa-
tion of the links can be given by the concept of counts-as
[1, 9]. Based on ideas by Searle [14], counts-as statements
add institutional meanings to real-world facts. Although be-
ing applied more frequently these days, counts-as relations
are often still represented as static links between the insti-
tutional facts and the brute facts [1, 4]. While giving an
explicit representation of the institutional meaning, thus al-
lowing for reasoning about the links, such static relations
do not work well in dynamic domains like the previous men-
tioned crisis management where the institutional meaning of
concepts can change over time, due to a change of context.

In [2] it was investigated how to extend the static im-

807

807-814



plementation of counts-as with the constitutive elements of
counts-as, thus allowing for an explicit representation of the
different contexts applicable to the institutional domains.
In this implementation the counts-as relation is not only de-
fined within a context, but is also used to define its context.

The counts-as relation can thus be used to connect ab-
stract concepts to more concrete ones. However, this does
not yet show how abstract norms should be translated to
more concrete ones. In [9] it was proposed to use counts-as
statements as a kind of operationalisation of norms. This
can be done by expressing that a certain state counts-as a
violation of a norm. This leads to a form of Anderson’s re-
duction of deontic logic [3]. For example, by stating that
“not doing a payment counts-as a violation”, one basically
expresses that payment is obliged. In this way norms are
given an explicit meaning by relating facts (institutional
facts or agent actions) to the concept of norm violation (of-
ten represented as a static proposition).

Using such a norm representation next to the use of counts-
as as a way to relate (system) facts (or events) to agent ac-
tions and their effects gives the agent the means to reason
about both the meaning of their actions in a causal man-
ner (i.e., what their actions bring about in a given context)
and about the normative impact of performing those ac-
tions in a certain manner (e.g., will doing a specific action
make the agent compliant to the normative context). Es-
sentially, it makes explicit the fact that the agent is within
two contexts; 1) the normative context, and 2) the institu-
tional context. The normative context determines whether a
certain action is normatively correct, while the institutional
context determines which specific events (services or basic
actions) counts-as performance of the action. E.g. credit-
card payment can count-as a payment within the context of
‘buying a book at Amazon’, but this payment might not be
acceptable as fulfillment of an obligation to pay within the
context of ‘buying a house’.

This work aims to extend the implementation of [2] with
respect to normative reasoning. It was shown there that
the constitutive part of counts-as adds interesting reasoning
possibilities to agent systems; agents could reason about the
effects of changing contexts and choose appropriate contexts
to achieve their goals. This paper shows that the link from
counts-as to the norms adds another interesting reasoning
possibility; namely, the ability to determine the normative
consequences of actions and the ability to reason about how
to act based on the norm specification.

This paper is structured as follows. In the next section
we look in more detail at how counts-as is used in agent
reasoning. Then in section 3 we briefly discuss the theoret-
ical background of counts-as. In section 4 we discuss how
systems with production rules can be used to implement
counts-as in general, and in section 5 we discuss how the
implementation in Drools is done. We end this paper with
conclusions in section 6.

2. REASONING WITH COUNTS-AS
In this section we illustrate the benefits to agent reason-

ing when having explicit links between concrete events and
abstract concepts as well as having explicit the relations be-
tween these abstract concepts and the norms.

In complex domains like, e.g., crisis management, the
meaning of the concrete events can change from context to
context. In grip-1 scenarios (little severity, for instance, a

�������

�������	
		��


	�
��

���

�������

� �������

�������	
		��


�

��
�
�
���	

�


��
�
�
���	

�


��
�
�
���	

�


��
���


��
��


������


����	��



����
���


Figure 1: inform in a simple scenario (left) and a
complex scenario (right).

car crash) the meaning of the institutional fact ‘sufficient
coordination’ means something different than in a grip-3
situations (like a flooding). While in the grip-1 scenario,
one person verbally communicating to coordinate the efforts
of the different parties involved (police, medics, firemen)
counts as ‘sufficient coordination’, in more pressing situa-
tions a larger coordination structure is required. Moreover,
the manner in which the coordination is managed differs
between these scenarios; where in the car crash the orders
can be done verbally between parties, coordinating in a large
scale flooding requires some form of tele-communication (that
might be recorded).

The above has consequences for the way the people (or
agents) have to follow norms dictated by the crisis manage-
ment procedures. Consider, for instance, the following norm:
“Crisis handlers need to inform their superiors through ad-
equate measures”. This norm is rather vague in describing
that crisis handlers (e.g., police officers or firefighters at the
scene of a crisis) need to use the appropriate channels to
inform their supervisor. In a simple scenario, like the car
accident mentioned earlier, a simple verbal “ok” to the coor-
dinator on site will suffice, but in more complex situations
it might be required to keep a log of all communication be-
tween the parties involved and a more complex action, such
as acknowledging orders from your superior via your PDA
might be required. The situation is shown with counts-as
relations in figure 1.

In the grip-1 scenario, agents can choose between inform-
ing their superiors via a verbal acknowledgement or using
their PDA to acknowledge the orders given. Either of these
events can be classified as doing an inform action. Sub-
sequently, it can be derived that doing an inform action
makes the agent fulfill the norm. In the grip-4 scenario,
however, this is not the case. While a verbal “ok” to your
superior still counts-as an inform, the norm specifies that
all communication should be traceable, which the verbal in-
form is not. The normative counts-as relation between the
actions and whether the norms are fulfilled has changed in
this scenario, and the agents should adapt accordingly.

Note that the classifications on the lower level (between
events and actions) can also dynamically change in a do-

808



main. While in our current example the verbal “ok”does not
count as a traceable inform, there are contexts where that
event would count as that kind of action, e.g., when the ver-
bal communication is overheard by a (trustable) third-party.

In [2] we have shown that making the links between the
abstract and concrete concepts explicit allows the agents
to reason about different contexts and changing contexts.
By changing contexts the organisational capabilities of the
agents are changed, which allows them to use other means
to solve the crises; allowing agents to reason about these
possibilities adds a dimension. The representation of the
ontological links between the institutional facts and brute
facts is thus not just for solving the ontological gap between
the two levels, it also gives meaning to the different contexts
and explains what happens when contexts change. In our
scenario of the crisis management an agent might change the
context from being a local incident to a regional disaster by
starting to communicate through a central control unit. This
choice of communication implicitly involves other parties in
the disaster which might constitute different counts-as rules
and possibly different norms.

Making the normative links explicit adds a similar reason-
ing capability, as the concepts of norm violation and norm
fulfillment get a proper meaning in the system. Agents can
use the counts-as rules to derive which actions would or
would not violate the norms and thus be able to reason on
forehand whether a particular action will get the required
result (that is, with respect to being norm compliant).

3. ABOUT COUNTS-AS
As mentioned before there is a need to explicitly represent

the relations between the abstract and concrete concepts
which can be used by agents in their reasoning. Moreover,
since these relations between concepts is dependent on the
context in which that relation is evaluated, the definition of
the context of those relations needs to be explicit as well.
This can be done with counts-as statements, which have
three different readings. The different readings of counts-as
can be summarised in the example seen in table 1 presented
below (based on [10]).

“In normative system Γ, happenings
with severe consequences to the general
safety count as disasters”

Constitutive

“It is always the case that large scale
fires count as happenings with severe
consequences to the general safety”

Classificatory

“In normative system Γ large scale fires
count as disasters”

Proper Class.

Table 1: Three notions of counts-as.

In the example, the counts-as locution occurs three times.
However, the three locutions are each of a different nature.
The second premise is a (generally acknowledged) contex-
tual classification concerning an universal context. The con-
clusion is a ‘new’, proper contextual classification which is
considered to hold with respect to the given system. The
first premise, however, has a semantic ingredient that is not
shared with the other two locutions of counts-as. The first
premise is what Searle referred to as the ability to “consti-
tute social reality” [14]. The counts-as defines a context in

which that counts-as relation holds. Counts-as has the abil-
ity to change the world, not in the sense that it affects phys-
ical reality; it makes no sense to express that “children of
the age of 3 counts-as writers”, since 3-year old children are
physically unable to write. Stating it does not make them
able to. Instead, counts-as adds institutional/organisational
semantics to real-world events and concepts (that is, the
events and concepts are given meaning in the context of the
institution/organisation). Doing so can, however, change
the institutional/organisational capability of people. That
is, counts-as does not change what people can or cannot do
physically, but it does change what people are allowed/entitled
to do institutionally.

The rules and norms related to concepts in the social world
change with the changes made by counts-as. It is this kind
of change that counts-as brings to the world. It creates
social facts that determine how situations should happen
or how situations should be handled. Thus, the counts-as
does not directly influence the world, but it influences the
capabilities/rights of roles, and the way these roles interact
with each other. Counts-as defines the social (normative)
meaning of things; it defines the applicability of the norms
on brute (real-world) concepts.

Continuing ideas from [9], one can also apply counts-as
locutions for the operationalisation of norms of an organ-
isation. Introducing two primitive normative facts, norm
violation and norm fulfillment, one can represent any ar-
bitrary norm (expressed in a deontic logic) as a counts-as
locution. For example:

Obliged A ⇒ ¬A counts-as norm violation

Forbidden A ⇒ A counts-as norm violation

In similar manner, properties of norms (how to achieve
norm compliance) can be expressed as counts-as statements
as well. For example

Obliged A ⇒ A counts-as norm fulfillment, etc.

Naturally, these counts-as expressions can be given ei-
ther of the three meanings of counts-as as specified above,
thereby expressing norm constitution, general norms (which
hold in every context), and context-specific norms.

Combining both uses of counts-as, as explicit link between
institutional and brute facts and as explicit link between in-
stitutional facts and normative facts, gives a double applica-
tion of counts-as when determining the normative meaning
of events:

1. low level events are related to institutional facts, e.g.,
V erbal ‘ok′ counts-as inform.

2. normative meaning is added, e.g., inform counts-as
norm fulfillment

The need for both these counts-as locutions becomes ev-
ident when realising that counts-as relations are not tran-
sitive in general (see also [10]). Because of having to take
into account two separate contexts which can change in-
dependently of each other, the relations between low-level
events and normative states cannot be simplified to just one
counts-as. If, however, both counts-as relations would be
classificatory, instead of proper classificatory as used in the
example presented before, or if one would only reason about
one single context, the transitive closure of counts-as rela-
tions can be used just as well. In dynamic domains, where

809



��


��


���


���


Figure 2: Context subsumption.

both the organisational context and the normative context
can change over time, an explicit representation of both re-
lations is required.

3.1 Dealing with Sub-contexts and Overlap
In order to be able to implement the different kinds of

contextual reasoning in practice, we have implemented all
the afore-mentioned aspects of counts-as into Drools rules.
As we will see in section 5, this allows for ease of use and
efficient reasoning by the agents in the system. However
there were some issues to be tackled, mainly related with
the handling of overlapping and subsuming contexts.

As described above, the constitutive counts-as rules define
the social context in which the counts-as holds. This could,
in practice, mean a lot of different rules defining a single
social context, which could make it problematic (or rather
inefficient) to use when comparing different contexts (e.g.,
in case when an agent wants to decide whether a scale-up
from grip-2 to grip-3 is required). To deal with this inef-
ficiency at runtime, we consider contexts to only have their
unique counts-as rules (the rules that are not part of any
other context). But this requires a proper handling of the
occurrence of context subsumptions (i.e. context A being
sub-context of context B) and context overlap (i.e. a non-
empty intersection between the scopes of context A and B).

Any domain contains a number of social contexts defined
by constitutive counts-as rules as mentioned above. These
constitutive counts-as rules define the classifications that
only hold for that context. Global classifications are con-
sidered to be part of the universal context, which subsumes
each defined social context (i.e., all defined contexts are a
sub-context of the universal context). To deal with sub-
sumed contexts and to allow for quick reasoning about what
makes contexts unique, we limit the counts-as rules in a con-
text to only those rules which are not contained in any of
its parent-contexts. Then, by using context inheritance re-
lations we specify that all the counts-as rules that hold in
a context are those contained in its specification and any
contained in the specification of its parents. Figure 2 shows
the subsumption of context C2 by context C1; for instance,
the social context of the grip procedures (C2) being a sub-
context of the social context of crisis management organisa-
tions (C1). This basically means that the worlds in the con-
text of grip are a ‘refinement’ of the worlds in the context of
crisis management organisation; that is to say, these worlds
adhere to both the classifications made by the parent con-
text as well as to the classifications specified by the specific
grip scenarios. Therefore, in a world in the social context
of crisis management organisation, all counts-as rules of C1′

��
 ��


����


���
���


Figure 3: Context overlap.

apply, but in worlds in the social context of grip apply both
the counts-as rules from C1′ and C2′ . It is then easy to see
that what makes the grip context different from the global
context by looking at just the rules specified in C′

2.
Similarly, we can deal with overlapping contexts. Take,

for example, the different grip-levels; each are a specifica-
tion of the crisis management situation at a different level of
severity, but they all contain elements that remain the same
between them; e.g., ambulances counts-as means of evacua-
tion in both grip-2 and grip-3. There are, however, distinc-
tions between the separate levels as well; e.g., army trucks
count-as means of evacuation only in grip-3, not in grip-2.
In figure 3 it is visualised how contextual descriptions for C1

and C2 are split: a) a new shared, parent context (shown
as C1&2 in the figure) that contains all counts-as rules that
are shared between contexts C1 and C2, b) two distinct sub-
contexts (shown as C1′ and C2′ in the figure) which contain
the counts-as rules that make each original context distinct.

By this split it now becomes fairly easy to determine the
differences between contexts C1 and C2: one looks at the
specific rules for each in C1′ and C2′ , respectively. Similarly,
it is easy to determine the similarities between contexts C1

and C2 by looking at their shared parent-context C1&2.
Using this manner of reasoning with context overlap and

context subsumption, we implemented the aspects of counts-
as which is described in section 5. First, however, we look
at how to implement norms with a production system in
general in the next section.

4. GROUNDING NORMS WITH PRODUC-
TION SYSTEMS

In our approach, practical normative reasoning is based on
a production system with an initial set of rules implement-
ing the operational semantics described in [11]. Production
systems are composed of a set of rules, a working memory,
and a rule interpreter or engine [5]. Rules are simple condi-
tional statements, usually of the form IF a THEN b, where a
is usually called left-hand side (LHS) and b is usually called
right-hand side (RHS). Our basic idea is that an agent can
configure the production system by adding abstract organi-
sational specifications and sets of counts-as rules.

The implementation of rule-based norm operationalisa-
tion has already been explored in previous research [7, 13,
16], but these proposals are either not yet implemented in
a real system or not using a high enough level of norm ab-
straction. Some recent approaches [8] define specific norm-
oriented programming languages that treat norms as rules
of a production system. However, such an approach requires

810



for an special production system.
We solve this issue by combining a normative language

[12] with a reduction to a representation with clear oper-
ational semantics based on the framework in [11]. This
framework uses logic conditions that determine the state of
a norm (active, fulfilled, violated). These conditions can be
expressed in first-order logic and can be directly translated
into LHS parts of rules, with no special adaptation needed.
The implementation of the operational semantics in a pro-
duction system to get a practical normative reasoner is thus
straightforward. This allows agents for dynamically chang-
ing its organisational context at any moment, by feeding the
production system with a new abstract organisational spec-
ification.

The detection of normative states is a passive procedure
consisting in monitoring past events and checking them against
a set of active norms. This type of reasoning is already
covered by the declarative aspect of production systems, so
no additional implementation in an imperative language is
needed. Using a forward-chaining rule engine, events will
automatically trigger the normative state - based on the op-
erational semantics - without requiring a design on how to
do it.

Having 1) a direct syntactic translation from norms to
rules and 2) a logic implemented in an engine consistent with
the process we want to accomplish, allows us to decouple
normative state monitoring from the agent reasoning. The
initial set of rules we have defined is the same for each type
of agent and each type of organisation, and the agent will
be able to transparently query the current normative state
at any moment and reason upon it. Also this decoupling
helps building third party agents such as observers and/or
enforcers.

There are several production system implementations avail-
able, some widely used by the industry, such as Jess, Drools,
Soar or Prova. In most of these systems rules are syntacti-
cally and semantically similar, so switching from one to the
other would be quite simple. As production systems dynam-
ically compile rules to efficient structures, they can be used
as well to validate and verify the consistency of the norms.

A prototype of our counts-as normative reasoner has been
implemented as a Drools program. Drools is an open-
source Object-Oriented rule engine for declarative reasoning
in Java [15], supported by the JBoss Community. Its rule en-
gine is an implementation of the forward chaining inference
Rete algorithm [6]. Concepts are imported from standard-
ised Description Logic owl-dl ontologies into Java objects
[17]. The use of Java objects inside the rule engine allows
for an easier communication of concepts with the agent rea-
soning, the core of which is also implemented in Java.

5. DROOLS IMPLEMENTATION
In Drools we can represent facts by adding them to the

knowledge base as objects of the class Predicate. The fol-
lowing shows an example of the insertion of Mayor(a) into
the knowledge base to express that a (represented as object
a of the domain) is in fact a mayor.
ksession.insert(new Mayor(a));

The class Predicate is designed specifically for our imple-
mentation and is the superclass of every predicate in the
system. We use this abstraction as a basis to reason about
norms withDrools. The following sections describes briefly
how we deal with norms, and how we have extended our

practical reasoner to include counts-as.

5.1 Implementing counts-as
We implement the concept of Context as a subclass of

Predicate, asserting its instances into the knowledge base:
ksession.insert(Context.CAR_CRASH);

ksession.insert(Context.FLOODING);

ksession.insert(Context.UNIVERSAL);

Defining contexts as concepts in the knowledge base allows
us to also refer to them explicitly and reason about them.
This is an important advantage over implementations where
contexts are mere labels on the counts-as relations between
concepts.

In order to define the proper classificatory counts-as in
a specific context, the predicate ClassificatoryCountsAs is
introduced. This predicate allows for the expression of clas-
sificatory relations between classes with respect to a context.

ksession.insert(

new CountsAs(

VerbalOK.class,

Inform.class));

new CountsAs(

PdaOK.class,

Inform.class));

new CountsAs(

PdaOK.class,

TraceableInform.class));

Figure 4: Definition of classificatory counts-as rules.

The expressions of Figure 4 show two examples of the
classificatory counts-as, where the statements respectively
describe that, in the universal context, a verbal OK counts-
as an inform, and a PDA OK counts as both an inform and
a traceable inform.

Figure 5, on the other side, shows the proper classificatory
counts-as for the example. In this case, each counts-as refers
to different contexts: an inform counts-as a proper inform
in a car crash scenario, but in a flooding scenario a traceable
inform counts-as a proper inform.

ksession.insert(
new ClassificatoryCountsAs(
Inform.class,
ProperInform.class,
Context.CAR_CRASH));

new ClassificatoryCountsAs(
TraceableInform.class,
ProperInform.class,
Context.FLOODING));

Figure 5: Definition of proper classificatory counts-
as rules.

To implement the uniqueness criterium specified in sub-
section 3.1, which allows for more efficient runtime use of the
counts-as rules, we implemented a Drools program to cre-
ate internal parallel sets of contexts (based on the intuitions
expressed in figures 2 and 3 in section 3.1). The first rule of
figure 6 shows how this splitting is done, while the second
rule of figure 6 gives an example of how one can identify in
which (original) context a counts-as rule was formulated.

811



rule "creation of running contexts"

when

ClassificatoryCountsAs(a : c1, b : c2)

and

lc : TreeSet() from collect(

ClassificatoryCountsAs(c1 == a, c2 == b))

then

RunningContext rc;

rc = new RunningContext(lc);

insertLogical(rc);

end

rule "identify running contexts"

when

cca : ClassificatoryCountsAs(c : context)

and

rc : RunningContext(countsas contains cca)

then

insertLogical(

new RunningContextIdentifier(rc, c));

end

Figure 6: Context splitting.

Figure 7 then shows an example of the context splitting.
From three counts-as rules, of which two of them are the
same for two different contexts, the result will be two con-
texts.

ksession.insert(
new ClassificatoryCountsAs(
Ambulance.class,
MeansOfEvacuation.class,
Context.GRIP2));

ksession.insert(
new ClassificatoryCountsAs(
Ambulance.class,
MeansOfEvacuation.class,
Context.GRIP3));

ksession.insert(
new ClassificatoryCountsAs(
ArmyTruck.class,
MeansOfEvacuation.class,
Context.GRIP3));

(after kession.fireAllRules())

[GRIP2GRIP3, GRIP3]

Figure 7: Example of context splitting.

The first rule of the example expresses that ambulances
count as a means of evacuation in the context of grip-2; the
second expresses that ambulances also count as a means of
evacuation in the context of grip-3; the third rule expresses
that in the context of grip-3 army trucks also count as a
means of evacuation. After the splitting of contexts grip-
2 and grip-3 containing just these three rules we end up
with two contexts, namely the context which contains the
rules that are present in both grip-2 and grip-3 (ambu-
lances count as means of evacuation), and the context which
gives the refinement of being in context grip-3, namely that
army trucks also count as means of evacuation. The result
being the GRIP2GRIP3 context containing the rule about am-

rule "activate running contexts"
when
ContextActive(c : context)
and
RunningContextIdentifier(
rc : runningContext, context == c)

then
insertLogical(new RunningContextActive(rc));

end

rule "classificatory counts-as"
when
rc : RunningContextActive(
ca : ClassificatoryCountsAs(
y1 : c1, y2 : c2))

and
obj : Predicate(class == y1)

then
insertLogical(new CountsAs(y1, y2));

end

rule "counts-as"
when
c : CountsAs(y1 : c1, y2 : c2)
and
obj : Predicate(class == y1)

then
Predicate instance;

instance = (Predicate)(
((Class)y2).newInstance());

instance.setObject(obj.getObject());
insertLogical(instance);

end

Figure 8: Activation of counts-as rules.

bulances being evacuation means (now unique, as there is
no need to specify it twice) and the GRIP3 context contain-
ing only the rule specifying that army trucks are evacuation
means. As explained in subsection 3.1, this split allows for
an easy and efficient means to check the similarities and
differences between the contexts grip-2 and grip-31.

The internal effect of a context activation is the activation
of all its shared contexts (see Figure 8). With the contexts
active, their counts-as rules will be instantiated as active
counts-as rules in the rule engine. The counts-as rules are
fired whenever there is a matching predicate. The effect of
a fired counts-as rule is that for each instance of the first
predicate of the rule, a new instance of the second predicate
of the rule is created.

Closure is provided in the program by automatically de-
tecting which context should be active based on the active
counts-as rules. Figure 9 shows the rules implemented for
this purpose. The first rule detects if all the proper clas-
sificatory counts-as rules for a certain shared context are
instantiated, in which case that shared context will be acti-
vated automatically. The second rule checks if all the shared
contexts that belong to a user defined context are active, in
which case the context will be activated.

By using these rules we can identify the concept of a con-
text (like grip-2) with the counts-as rules related to that

1Note that in this example grip-3 ended up as a subcontext
of grip-2 because of the limited scope of the example. In
reality, there are other differences between these contexts
which would show that they instead overlap.

812



rule "activate running context"

when

rc : RunningContext(cal : countsas)

and

forall(

ca : ClassificatoryCountsAs(a : c1, b : c2)

from cal

CountsAs(c1 == a, c2 == b))

then

insertLogical(new RunningContextActive(rc));

end

rule "activate context by its running contexts"

when

c : Context()

and

forall(

RunningContextIdentifier(

rc : runningContext, context == c)

RunningContextActive(runningContext == rc)

)

then

insertLogical(new ContextActive(c));

end

Figure 9: Automatic activation of contexts.

context. Having this constitutive relation between a context
and the counts-as rules available we can now also handle the
following scenario of the crisis management.

Suppose the hospital has to be evacuated due to a flood.
There are not enough ambulances available to evacuate all
people in time. The commander (chief medic at the loca-
tion) checks to see what can be done. He can use (spe-
cial) army trucks. However, army trucks do not (in general)
count-as ambulances. The commander can check (with the
Drools implementation) that army trucks count-as ambu-
lances in the context of grip-3. (They are part of consti-
tuting grip-3). So, the commander decides to move to the
context of grip-3. Now he has to check what other rules
constitute grip-3. One of them states that in grip-3 the
mayor counts-as commander. This means that the comman-
der has to transfer his command to the mayor. Moreover,
in a flooding scenario, as stated previously, only a trace-
able inform counts as an appropiate inform. That means
that all agents should be aware of the new context and act
accordingly, being forced to adapt to a traceable informing
mechanism if they were not using it.

The scenario shows that we need the context as an ex-
plicit concept and also we need the constitutive aspect of
the counts-as rules that define the context in order for the
commander to be able to define a switch to another context
(grip level) and realizing the consequences of this switch.
The Drools implementation presented above enables us to
do this.

5.2 From norms to rules
Norms in our abstract organisational model use a formal-

ism similar to the one described in [12]. Each norm is rep-
resented as a dyadic deontic statement with multiple condi-
tions: Oa,b,c,x(α) for obligations, and
Fa,b,c,x(α) for prohibitions where a, b, c are the three condi-

tions, respectively: activation condition, maintenance con-
dition and expiration condition; x is the role or actor abiding
to the norm; and α is the norm target.

The norm used as an example in Section 2 would be for-
malised as: a : emergencyCondition(location)
b : emergencyCondition(location)
c : done(x, properInform(emergencyCondition(location)))
α : properInform(emergencyCondition(location))
x : Agent

As described in Section 4, norms are parsed from the ab-
stract organisational model. The conditions of the deontic
statements of these norms undergo a syntactic translation
to LHS parts of rules, while the RHS parts are based on the
operational semantics [11]. For example:

rule "Norm12_expiration"
when
Done(X : player, action == I)
and
I : ProperInform(content == E)
and
E : EmergencyCondition(L : location)

then
Substitution s = new Substitution();
s.add(new Value("X", X));
s.add(new Value("I", I));
s.add(new Value("E", E));
s.add(new Value("L", L));
insertLogical(new HoldsExpiration("Norm12", s));

end

The expiration condition of the norm is translated to the
LHS part, while at the RHS the predicate HoldsExpira-
tion, which is part of the operational semantics, is added
to the knowledge base with a grounding of the variables s.
The type Substitution is a subclass of Set<Value> overrid-
ing some methods so that when comparing two instances
of Substitution we can evaluate if they pertain to the same
instantiation of the grounding.

These rules are consistent with our definitions, but are not
grounded to low level events representing brute facts. In or-
der to solve this, we have extended this implementation with
the counts-as operator. The following rules express whether
a norm is fulfilled or violated according to the definitions in
Section 3:

rule "obligation counts-as"
when
n : Norm(type == Norm.OBLIGATION_TYPE)
and
ni : NormInstance(norm == n)

then
Context c = new Context(ni.hashCode());
insertLogical(c);
insertLogical(
new ClassificatoryCountsAs(
IsTrue.class, Fulfilled.class, c));

insertLogical(
new ClassificatoryCountsAs(
IsFalse.class, Violation.class, c));

end

rule "prohibition counts-as"
when
n : Norm(type == Norm.PROHIBITION_TYPE)
and
ni : NormInstance(norm == n)

then
Context c = new Context(ni.hashCode());

813



insertLogical(c);
insertLogical(
new ClassificatoryCountsAs(
IsTrue.class, Violation.class, c));

insertLogical(
new ClassificatoryCountsAs(
IsFalse.class, Fulfilled.class, c));

end

where IsTrue() and IsFalse() are implementations of the
predicates defined in [11] that express whether the target of
the norm associated with a certain norm instance holds true
or false. The statements produced by these rules are thus
read as ’In the context of a certain instantiation of a norm,
the fact of its norm target being true/false counts as a norm
fulfillment/violation’.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have shown a concrete implementation of

abstract norms that can be used by agents to reason about
norm compliance. One of the key issues of connecting norms
to concrete actions to be taken is that we need (at least) two
uses of the counts-as relation. One to connect brute facts
(or events) to institutional states and actions. The second
one to connect these institutional facts and actions to their
normative interpretation. We have also shown that the con-
text of the norms and the counts-as relation is important
in the type of applications that we are using this frame-
work for. Thus we cannot suffice with a pure classificatory
implementation of the counts-as relation, which would be
straightforward. Instead we have to use an implementation
that takes the context of the norms and the counts-as re-
lation into account. One of the consequences of using this
proper classificatory version of the counts-as relation is that
it is no longer transitive. We have to check whether contexts
change between the rules in order to know whether they can
be combined.

We have shown how the above requirements have been
met by the implementation in Drools. In Drools we can
explicitly connect the context to the counts-as rules and use
it as a constraint on its use. Agents can make use of the
Drools engine to reason on what specific course of action
they should pursue in order to comply to the norms that
are imposed by the context they are in. However, they can
do more than just that. They can also reason about the
consequences of changing the context. In the example, the
commander has to the ability to change the context by in-
forming the mayor about the disaster. Of course this action
of the commander itself can be regulated by norms that state
that the mayor can only be involved if the disaster gets too
big (according to some criteria).

As future work we will look at the connection of this imple-
mentation of norms and counts-as to the reasoning agents
implemented on the AgentScape platform. Already some
work has been done on the integration of normative reason-
ing in the agent planning on this platform. However, this
work assumes the norms to be expressed in terms of concrete
actions that can be performed directly on the platform. We
will extend this framework to make use of the counts-as re-
lation and the reasoning about the context.

7. REFERENCES
[1] H. Aldewereld. Autonomy vs. Conformity: an

Institutional Perspective on Norms and Protocols.

PhD thesis, Universiteit Utrecht, June 2007.

[2] H. Aldewereld, S. Álvarez-Napagao, F. Dignum, and
J. Vázquez-Salceda. Engineering social reality with
inheritence relations. In Engineering Societies in the
Agents World X (ESAW 2009), LNAI 5881, 2009.

[3] A. Anderson. A reduction of deontic logic to alethic
modal logic. Mind, 67:100–103, 1958.

[4] M. Dastani. Normative multi-agent organizations. In
Engineering Societies in the Agents World X (ESAW
2009), LNAI 5881, 2009.

[5] R. Davis and J. King. An overview of production
systems. Stanford Artificial Intelligence Laboratory,
Report No. STAN-CS-75-524, Jan 1975.

[6] C. L. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem.
Artificial Intelligence, 19(1):17–37, 1982.

[7] A. Garćıa-Camino, P. Noriega, and J. A.
Rodŕıguez-Aguilar. Implementing norms in electronic
institutions. Proceedings of the fourth international
joint conference on Autonomous agents and
multiagent systems, Jan 2005.

[8] A. Garćıa-Camino and J. Rodŕıguez-Aguilar.
Constraint rule-based programming of norms for
electronic institutions. Autonomous Agents and
Multi-Agent Systems, Jan 2009.

[9] D. Grossi, H. Aldewereld, J. Vázquez-Salceda, and
F. Dignum. Ontological aspects of the implementation
of norms in agent-based electronic institutions.
Computational and Mathematical Organization
Theory, 12(2-3):251–275, 2006.

[10] D. Grossi, J.-J. Ch. Meyer, and F. Dignum. Counts-as.
classification or constitution? an answer using modal
logic. In L. Goble and J.-J. Ch. Meyer, editors,
Proceedings of the Eight International Workshop on
Deontic Logic in Computer Science (DEON’06).
Springer-Verlag, 2006.

[11] N. Oren, S. Panagiotidi, J. Vázquez-Salceda, and
S. Modgil. Towards a formalisation of electronic
contracting environments. Proceedings of the
Workshop on Coordination, Organizations,
Institutions and Norms -COIN@AAAI08-, at AAAI
08, Chicago, USA, 2008.

[12] S. Panagiotidi, J. Vázquez-Salceda,
S. Alvarez-Napagao, S. Willmott, and R. Confalonieri.
Intelligent contracting agents language. Proc. of the
Symposium on Behaviour Regulation in Multi-Agent
Systems -BRMAS’08-, Aberdeen, UK, Jan 2008.

[13] A. Paschke, J. Dietrich, and K. Kuhla. A logic based
sla management framework. 4th Semantic Web
Conference (ISWC 2005), Jan 2005.

[14] J. Searle. Speech acts. An essay in the philosphy of
language. Cambridge University Press, 1969.

[15] JBoss Community. JBoss drools business rules,
http://www.jboss.org/drools.

[16] J. Vázquez-Salceda and S. Alvarez-Napagao. Using
soa provenance to implement norm enforcement in
e-institutions. In Coordination, Organizations,
Institutions and Norms in Agent Systems IV, LNCS
5428, 2009.

[17] M. Zimmerman. OWL2Java,
http://www.incunabulum.de/projects/it/owl2java.

814


